PetriScript
Reference Manual
1.0

Alexandre Hamez
Xavier Renault

Contents

(1 PetriScript basics|
(LT Using PetriScript| oo oo oo
e Tties

1.3 Comments| e e e e

[L.6 Variablestypes| oo o
[1.7 Arithmeticexpressions|.,
1.8 String expressions| oo

1.9.1 nditional str res|. . . .
[1.9.2 Loop structures|.o o
(1.10 Basicexample| oo oo o

|g ManiEulate Petr1 Nets|

Examples
3.1 FIFQ . . . e,

3.2 Philosophers”dinner] o o
B3 Another Philosophers”dinner]

OISO WW

10

10
11
14
14
14
15
15
15
16

19
19
20
20
22

25

Introduction

The CPN-AMI platform provides many tools to work on Petri nets such as verifying or
model-checking tools. It was easily possible to graphically design simple Petri nets with
Macao!, but various works made internally at LIP6 reveal that it was needed to automate
such task.

Therefore PetriScript has been designed to provide some facilities in modelling places-
transition and coloured Petri nets within the CPN-AMI platform?.

Its main purpose is to automate modelling operations on Petri nets such as merging,
creating, and connecting nodes. Thus, it supports almost everything needed like macros,
loops control, lists, string and arithmetic expressions, ..., and avoids to the maximum
the intervention of the user. Its syntax is more or less Ada-like.

Chapter [1| will introduce the basic aspects of PetriScript such as loop, variables, ...,
while chapter 2] will explain the manipulation of Petri nets via PetriScript .

A Backus-Naur Form is provided in appendix

lwww—src.lip6.fr/logiciels/mars/MACAO
Zwww—src.lip6.fr/logiciels/mars/CPNAMI

www-src.lip6.fr/logiciels/mars/MACAO
www-src.lip6.fr/logiciels/mars/CPNAMI

Chapter 1

PetriScript basics

Before learning the manipulation of Petri nets with PetriScript , which is presented in
chapter 2] there are some aspects of the language to understand.

1.1 Using PetriScript

To launch PetriScript in Macao, select AMI-NET > Modelling facilities > Petri Net as-
sembling > Execute list of commands. Then Macao opens a window, shown in figure

L1
O 6 PetriScript

Please enter a PetriScript program

print "hello world!";

Cancel) (OK \

Figure 1.1: PetriScript window

It is strongly advised to type the program in a real text editor like Emacs?, or at least

1Pe’criScript provides you a mode for Emacs

CHAPTER 1. PETRISCRIPT BASICS

to copy your script before validating in order to keep the text in case of an error.

You can also choose to launch PetriScript scripts in a debug mode by selecting AMI-
NET > Modelling Facilites > Petri Net assembling > Execute list of commands (debug
mode). This time, if an error occurs, then Macao will display state in which state the net
just was before the error happened.

1.2 Generalities

Typically, PetriScript consists in sequence of declarations followed by a sequence of in-
structions. It’s also possible to define some macros anywhere in the text. Declarations,
instructions and macros definitions all end with the symbol ’;". There can be as many
spaces and carriage return as you wish. Like Ada, it is verbose, but unlike Ada, it is
case-sensitive to preserve names and attributes of nodes.

1.3 Comments

Comments begin with '——" and finish with a carriage return.

1.4 The basic instruction: print

It prints the following string expression (see into the historic window of Macao. So,
a first very simple script would be like this:

print "Hello world!";

1.5 Macros

PetriScript uses m4? as its preprocessor. So a macro is defined this way:
define (macro, text)
It has the effect to replace all ‘'macro” which follow this definition in the script by "text’.
So the tiny following scripts produce "Hello World!" on the historic window of Macao:
define (HELLO, Hello World!)
print "HELLO";
define (HELLO, "Hello World!")
print HELLO;

You can use any facilities of m4 such as testing if a macro is defined. For more details,
take a look at the m4 documentation.

1.6 Variables types

Three different types are available in PetriScript : integers, lists and strings. Names of
variables which hold these types always begin with the symbol ’$" and can contain nu-
merical characters, letters and the underscore symbol ’_". It is completely legal to write
$a_very_long_variable_name_993023.

http://www.gnu.org/software/m4/m4.html

http://www.gnu.org/software/m4/m4.html

CHAPTER 1. PETRISCRIPT BASICS

Variables can be affected with a value or with another variable of the same type at
declaration or anywhere in the script using ":=".
Declarations are made at the beginning of the script before any instruction. Type is
given before the variable name and an affectation if needed.
Example:
int $i;
string $chaine := "a little text";

e Integers
They are declared by the keyword int.

int $i;
int $j := 10;

Any arithmetic expression (see(1.7) can be affected to an integer variable.

$i := 1 + 10 mod 2;
$j = $i / 3;
e Lists
They are declared by the keyword list.
list $1;

list $m := place {"a" , "b"};

Elements of the list are separated by commas and surrounded by brackets.
As their behaviour is completely related to the manipulation of nodes, the exact
way of using these lists is described further on, at section p-

e Strings
They are declared by the keyword string.
string $s;
string $t := "some text to print";
Any string expression (see[1.8) can be affected to a string variable.

$s "text" & '10/2’;
$t "$s’ & "an other text";

1.7 Arithmetic expressions

PetriScript handles arithmetical operations on integers. The available operations are:
e multiplication "+’
e division "/’
e modulo ‘mod’

subtraction -’

addition '+’

CHAPTER 1. PETRISCRIPT BASICS

Operands of an arithmetic expression can be integers or variables.

As usual, multiplication, division and modulo operators have the same priority. They
have priority over addition and subtraction. Obviously, if you have to deal with complex
arithmetic expressions, you can use parentheses.

$i = 1+2x%3;
$i ;= $imod 3 x (2/ 5);

If a list is given in an arithmetic expression, it returns its size. It is not legal to give a string
expression.

1.8 String expressions

String expressions are used by the print instruction and to describe nodes (explained in

chapter2).
A string expression consists in the concatenation of different operands with the oper-

ator '&’. An operand can be a

41N

e sequence of characters surrounded by " :

"Some text"

e variable surrounded by "’ :
"$variable ’
If the given variable is a string, it just returns its content; when it is an integer, it
returns its value interpolated into a string. Finally, if the variable is a list, it returns
a string representation of all its components.
e arithmetic expression surrounded by """ :
10 / 5 +37
2+ $i’
So, the following script will produce "Result: 5 + 2" on the historic window.
int $i;
string $s;

$i := 10 / 2;
$s := "Result: " & '$i’ & " + " & ’10 mod 8’;

print '$s’;
To insert a carriage return in a string expression, use the '/’ character: "a line / another
line"
1.9 Control structures

PetriScript provides the classic ways of controlling your scripts with conditional and loop
structures.

CHAPTER 1. PETRISCRIPT BASICS

1.9.1 Conditional structures

if boolean_expression then

instructions_sequence
end if

if boolean_expression then
instructions_sequence
else
instructions_sequence

end if

A boolean_expression is composed of arithmetic expressions connected with boolean oper-
ators, showed in table

] Symbol \ Comparison ‘
= Equal
/= Different
<= Inferior or equal
>= Superior or equal
< Inferior
> Superior

Table 1.1: Boolean Operators

A boolean expression can be composed of two boolean expressions connected with
and and or. It can also be negated with not.

Examples:

if $i = 0 then
print "zero value";
end if;

if $i = 0 and $j = 1 then
print "zero value";
else

print "other value";
end if;

if not $i = 0 and $j = 1 then
print "test passed";
end if;

You can also test if a value is in a given range with the boolean expression arithmetic
expression in arithmetic expression .. arithmetic expression.

Examples:

if $i in 0..10 then
print "good";
end if;

CHAPTER 1. PETRISCRIPT BASICS

if $i in 0..10 or $i = 20 then

print "always good";
end if;

1.9.2 Loop structures

You can use two types of structures to loop, one which loops while the given boolean
expression is verified, and another one which loops for a given range.

e While structure

while boolean_expression loop
instructions_sequence
end loop

Example:

while $i < 10 loop
$i = $i + 1;
end loop;

e For structure

for variable in arithmetic_expression..arithmetic_expression loop
instructions_sequence

end loop

Example:

for $i in 1..10 loop
print “$i’;
end loop;

1.10 Basic example

Here is a little script which presents every basic aspect of PetriScript :

— a little example

— which tests the parity of
— a number

define (EVEN, " even. ")
define (ODD," odd. ")
int $i;

string $s;

for $i in 1..10 loop
if $i mod 2 = 0 then

CHAPTER 1. PETRISCRIPT BASICS

$s := ‘$s’ & ’'$i’ & EVEN;
else
$s
end if;
end loop;

"$s’ & '$i’ & ODD;

print "Result: " & "$s’;

It displays "Result: 1 odd. 2 even. 3 odd. 4 even. 5 odd. 6 even. 7 odd. 8 even. 9 odd.

even." on the historic window.

10

Chapter 2

Manipulate Petri Nets

This chapter explains how to manipulate Petri nets with PetriScript.

2.1 Describe a node

Before acting on Petri nets, it is necessary to describe its components: nodes and arcs.

2.1.1 Single node

A node is designated by its name, which is a string expression and its type. The type of
a node can be a place, a queue, an immediate or a transition. The form to designate a
node is the following: type node_name. For example, the place a is simply described as

place "a"

When creating a node (see2.2.1), you may want to give some attributes of the node to
create. You can give a list of attributes: type node_name attributes_list Like the name of a
node, most of these attributes are string expressions. The table[2.1|shows which attributes
can be used with a type of node.

] \ place \ queue \ transition \ immediate \ type ‘

name * * * * string

X * * * * arithmetic

y * * * * arithmetic

r * * * * arithmetic

t * * * * arithmetic
domain * * string
marking * * string
guard * * string
priority * * string
delay * string
action * string
weight * string

Table 2.1: Attributes

10

CHAPTER 2. MANIPULATE PETRI NETS

Therefore, to describe a place named place with a marking equals to 1, it’s done this
way:
place "place" marking "1"
or

place "place" (marking "1")

If there are more attributes to write, the parentheses are mandatory and attributes are
separated by a comma:

place "place" (marking "1", domain "red")

As PetriScript supposes that each node has a unique name, it is sufficient to designate
it with its name when modifying it, but you can type the whole description if you want
to. If one attribute is wrong even if the name is good, then PetriScript will complain about
not finding the node.

The attribute name is only useful when modifying a node (see 2.2.4). Note that writ-
ing place "place” (name "another name", marking "2") is strictly equivalent to place "another
name"marking "2".

The Net node

The Net node is a particular node which has two attributes: authors and declaration. Only
one operation can be made on this special node: the modification. For more details, see

subsection page

Graphical positioning

The x and y attributes are the cartesian coordinates of a node in the Macao window, while
r and t are its polar coordinates. When using these latter attributes, PetriScript uses x and
y as the center of the orthonormal coordinate system in which polar coordinates are used,
as shown in figure

The upper left corner of the Macao window is used as the center of the nodes coordinates,
the z axis is oriented from the left to the right and the y axis from the top to the bottom.

2.1.2 Lists of nodes

Lists are useful for fusions of sets of nodes. Before using one, it is necessary to declare it

as described in[1.6, p. [l

A such list is a sequence of nodes of the same type separated with a comma and included
within ’{” and "}". The type is specified before the list:

place {"p_1" , "p_2" , "p_3"}
immediate {"i_11" , "i_12" , "i_13","i_14"}
Adding nodes

Here are the four ways to add nodes to an existing list:

e variable := type node_list
The content of the variable is lost (but the nodes it formerly contained are not deleted)
and replaced with the given list. If the two given lists are of different types, variable
takes the type of node_list.

11

CHAPTER 2. MANIPULATE PETRI NETS

e 06 PetriScript.root.1

] o

\/

Figure 2.1: Cartesians and polar coordinates in PetriScript

$1

$m :

place {"pl", "p2"};
transition {"t1","t2","t3"};

e append node to variable
It simply adds the node node at the end of variable variable. If node and variable are
of different types, an error is produced.

append place "p" to $I1;
append transition "t" to $m;

o append type node_list to variable
If node_list and variable are of different types, an error is produced.

append place {"pl","p2"} to $I;
append transition {"t1","t2","t3"};

o append variable to variable
If variable and variable are of different types, an error is produced.

append $n to $1;

Note 1 You can’t add a node that doesn’t exist to a list. Otherwise, it will produce an
error.

Note 2 If you add the same node two or more times to a list, only its first occurrence
will be in the list.

12

CHAPTER 2. MANIPULATE PETRI NETS

Accessing node in list

Accessing to an element in a list is done by giving its position between brackets: vari-
able[position], where position is an arithmetic expression. It is so possible to designate a
node via the list containing it. So it is possible to write things like this:

append $1[2] to $m;

Trying to access an element at a position which is beyond the list’s size does nothing
and doesn’t produce an error. The first element is at position 0 and the last element is at
position $1 — 1 for a list $1. A list in an arithmetic expression returns its size.

As an example, the following script creates some places, then adds them to a list and
finally prints this list element by element on the historic window.

list $1;
list $m;
int $i;

for $i in 1..3 loop
create place "p" & '$i’;
create place "q" & '$i’;
end loop;

"no_.n

create place "r";

$1

$m

Place {”pl”,”pz”};
place {"ql", "q2","q3"};

append $m to $1;
append place "r" to $1;
for $i in 0..$%$1-1 loop
print "1" & '$i’ & " = " & "$1[%i]’;
end loop;

List inter-dependencies

To prevent the presence of a non-existing node in a list, if a node is contained in more
than one list, deleting or modifying it will also delete or modify it in every other list wich
has a reference on it.

Regular Expressions

An important feature of PetriScript is that you can add nodes with regular expressions in
lists. In fact, anywhere a list is expected, you can use these expressions. These expressions
are surrounded by "%’ and are the same as in Perl or Python. They return all nodes that
match the given expression. For example, if they are three places a, b, ¢ in a Petri net, the
list $1 will contain place a and b :

list $1;
$1 := place {%[a—b]%};

You can use these regular expressions for every attribute: if now places b and c have
the same domain d, you can select them with the following script:

list $1;
$1 := place {%.% domain %d%};

13

CHAPTER 2. MANIPULATE PETRI NETS

You can use these every time you need to construct a list, as shown in the following
example which adds all places that contain "places” in their names to the list $1:
int $i :=0;
list $1;

for $i in 1..10 loop
create place "place" & '$i’;
end loop;

append place {%place%} to $1;

Note The regular expression like ab will match not only the text ab, but also the text
abba. So if you want to match an exact word, you can use "ab$ where """ means the begin-
ning of the text in which the search is done and ’$’ its end. You can easily find documen-
tation on internet on this subject.

2.1.3 Arcs

They are simply designated this way: (nodel , node2), which is the arc oriented from
nodel to node2. For example:

"

(place "p",transition "t")

If two nodes of the same type are provided, an error is raised.

2.2 Available operations

For each operation, if it is given a node that doesn’t exist, the script fails. Creating a node
or modifying a node with the characteristics of an existing one also produces an error.

2.2.1 Creation

create node

create place "p";
" n

create place "q" (domain "red", marking "1");

The following example shows how to create a set of places (added to a list) and tran-
sitions, using string expressions:
int $i;
list $1;

for $i in 1..10 loop
create place "place_" & ’$i’ (domain "green", marking
l$11)’
append place "place_" & ’"$i’ to $I1;
create transition "transition_" & ’'$%$i’ (guard '$i—1")

7

end loop;

print “$17;

14

CHAPTER 2. MANIPULATE PETRI NETS

2.2.2 Connection

connect valuation nodel to node2

connect nodel to node2

connect inhibitor valuation nodel to node2
connect inhibitor nodel to node2

As Petri nets are oriented graphs, the resultant arc will be oriented from nodel to
node2. To make it inhibited, use the keyword inhibitor. Valuation is a string expression.

"

connect place "p" to transition "t";
connect transition "t" to place "p";

"

connect "<x>" place "p" to transition "t";
connect inhibitor transition "t" to place "p";

2.2.3 Deletion

delete node
delete list
delete arc

You can delete a sole node or a list of node. Delete an arc has the effect to disconnect
the two given nodes, but it does not delete them.

delete place "place";

delete $1;

delete(place "p" , transition "t");
delete $1[$i+1];

Remember that
delete place "place";
is strictly equivalent to
delete place "place" (domain "red", marking "1");

as PetriScript differentiates nodes only with theirs names.

2.2.4 Modification

set node to attributes_list
set arc to string_expression

You can modify every attributes of a node. To rename a node, use the attribute name.

no.n

set place "p" to name "q";
set transition "t" to (name "u", guard "3");
set place "q" to (x 100 , y 10);
set $1[3] to domain "blue";
Modifying an arc changes its valuation.

set (place "p" , transition "t") to "<y>";

It's not possible to change a classic arc to an inhibited one, or the opposite. If you
want to, delete the old arc and create a new one with the type you want.

15

CHAPTER 2. MANIPULATE PETRI NETS

The Net node

To modify the Net node, you would write:

" " nomn

set net "net" to (authors "a" , declaration "d");

But as there is only one net node, it’s not mandatory to write its name. So you can simply
write:

n_n

set net to (authors "a" , declaration "d");

2.2.5 Fusion

Four types of fusion are provided: a node with a node, a list with a node, a list with a list
and a list into a single node. Trying to merge a node with itself produces an error. In all
cases of fusion, the given node or lists are deleted.

Node with node

merge nodel and node2 into attributes_list
merge nodel and node2

If no attributes_list is given, then PetriScript automatically computes the new name
and attributes by concatenating nodel and node2 with an underscore. For example merg-
ing a place a2 with a marking m and a place b gives a place with a name a_b and a marking
b.

Examples:

merge place "a" and place "b";

" non

merge place "c" and place "d" into name "e" ;

" "no_n

merge place "c" and place "d" into (name "e" , marking "f);

Node with List

merge nodel and list into attributes_list
merge nodel and list
merge list and nodel into attributes_list
merge list and nodel

This is the extension of the previous fusion type. Nodel is duplicated as many times
as there are nodes in list. Then each copy of nodel is merged with a node of list. This
time, attributes_list is used as a pattern: each new resultant node will be created with the
characteristics contained in attributes_list concatenated with a number starting from 1. If
no pattern is given, PetriScript computes one itself.

As an example, the following script creates a place "a" and five places prefixed by "b_"
in list $1. Then it merges this list with the place "a", giving a marking equal to 1 to the
newly created nodes.

int $i;
list $1;

create place "a";

for $i in 1..5 loop

16

CHAPTER 2. MANIPULATE PETRI NETS

create place "b_" & "$i’;
end loop;
$1 := place {%b_x%};

"o

merge $1 and place "a" into (marking "1");

List with list

merge list1 and list2 into attributes_list
merge list1 and list2

Again, this is an extension to the previous fusion type. Now each node of list] is
duplicated as many times as there are nodes in /ist2 and reciprocally. Then each copy of
list1 is merged with the corresponding copy of list2, as shown in figure

The following script creates two types of places: the ones which are prefixed by "a_
and the ones which are prefixed by "b_". It adds them into lists $l and $m, then merges

these lists.

"

int $i;
list $1;
list $m;

for $i in 1..5 loop

create place "a_" & "$i’;
end loop;
$1 := place {%a_x%};

for $i in 1..3 loop
create place "b_" & '$i’;
append place "b_" & '$i’ to $m;
end loop;

merge $1 and $m;

Single list
merge list into attributes_list

merge list

Now, all nodes of list are merged into a single one, with the attributes of attributes_list
if presents, or computed automatically if not.

Examples:

merge $1 into name "another_place";

merge place {"al","a2","a3"};

17

CHAPTER 2. MANIPULATE PETRI NETS

a3+a2+al

aS+a4

Figure 2.2: Nodes fusion

[up—— [——

[——

Figure 2.3: Fusion of a node a with a list $E = {b, ¢, d}

S
o o I
N vl
]
lllllllll N
ST]
K I
N N

< <
|
]
lllllllll N
~ !
N ot
]
lllllllll N
N
) ~ !
S P
|
]
lllllllll N
. . -

N ~
S RS U |
]
lllllllll N
e
~ ~ !
N < I
|
]

Figure 2.4: Fusion of a list $E = {a,b} with alist $E; = {¢,d, e}

—

Figure 2.5: Fusion of a single list $£1 = {a, b, ¢} into a node ¢

N

\

1
’

ONO)

1
\

’
S

/

18

Chapter 3

Examples

Here are some more realistic examples:

3.1 FIFO

The following script creates a fifo (shown in figure using macros and looping instruc-
tions.

Slot_3

FIFO_Start FIFO_Start

JEmpty_1

1

Figure 3.1: FIFO

define (FIFO_SIZE,3)
define (FIFO_BASE_X,100)
define (FIFO_BASE_Y,100)
define (FIFO_STEP,120)

int $wave := 0;

for $wave in 1..FIFO_SIZE loop
create place "Slot_" & ’$wave’ (x FIFO_BASE_X + FIFO_STEP % $wave,
y FIFO_BASE_Y);
create place "Empty_" & ’‘$wave’ (x FIFO_BASE_X + FIFO_STEP $wave,
y FIFO_BASE_Y + 100, marking "1");
end loop;
for $wave in 1..FIFO_SIZE+1 loop
create transition "t" & ‘$wave —1" & "
* $wave — FIFO_STEP / 2,
y FIFO_BASE_Y + 50);
if $wave < FIFO_SIZE+1 then
connect "1" transition "t" &'$wave —1" & "_to_
Slot_" & ’$wave’;
connect "1" place "Empty_" & ’‘$wave’ to transition "t" &'$wave —1" & "
to" & ’‘$wave’;

to_" & ’‘$wave’ (x FIFO_BASE_X + FIFO_STEP

" "

& ’‘$wave’ to place

end if;
if $wave > 1 then
connect "1" transition "t" &'$wave —1" & "_to_" & ’‘$wave’ to place
Empty_" & ’‘$wave — 17;

"

19

CHAPTER 3. EXAMPLES

connect "1" place "Slot_" & ’‘$wave — 1’ to transition "t" &'$wave —1" & "
to" & ’'$wave’;
end if;
end loop;

set transition "tO_to_1" to (name "FIFO_Start");
set transition "t" & 'FIFO_SIZE’ & "_to_" & 'FIFO_SIZE + 1’ to (name "FIFO_End");

3.2 Philosophers’ dinner

This is a coloured version of the Philosophers” dinner, shown in figure

Class Cis 1..3; EAT
var X in C;
/<X> <X>H<X++1> X
ThinkingPhilosophers Forks EatingPhilosophers
C C C
<CALL> T <CALL>
<X>H<X++1> <>

x> wTHINK

Figure 3.2: Philosophers” dinner

define (THK, ThinkingPhilosophers)
define (PHILOS, 3)

define (EATING, EatingPhilosophers)
define (XPOS,100)

define (YPOS,100)

define (XINCR,150)

define (YINCR,75)

— declare our variables in the net
set net to declaration "Class C is 1..PHILOS; / var X in C;";

create place "THK" (domain "C" , marking "<C.ALL>", x XPOS , y YPOS);

create transition "EAT" (x XPOS + XINCR , y YPOS — YINCR);

create place "EATING" (domain "C" , x XPOS + 2 % XINCR , y YPOS) ;

create transition "THINK" (x XPOS + XINCR , y YPOS + YINCR);

create place "Forks" (domain "C" , marking "<C.ALL>" , x XPOS + XINCR , y YPOS);

connect "<X>" place "THK" to transition "EAT";

connect "<X>" transition "EAT" to place "EATING";
connect "<X>+<X++1>" place "Forks" to transition "EAT";
connect "<X>" place "EATING" to transition "THINK";
connect "<X>+<X++1>" transition "THINK" to place "Forks";
connect "<X>" transition "THINK" to place "THK";

3.3 Another Philosophers’ dinner

Much more complex to write, here is the non-coloured version of the philosophers’ din-
ner problem. In fact, the script complexity is due to the graphical positioning of nodes

(see figure3.3).

define (X,500)
define(Y,500)
define (RADIUS,80)

20

CHAPTER 3. EXAMPLES

define (STEP,40)
define (PHILOS, 3)

define (ANGLE, 360/ PHILOS)
define (ADJUST,70)

int $i := 0;
for $i in 1..PHILOS loop

create place "THINK_ " & '$i’ (marking "1" , x X , y Y, r RADIUS + 6+STEP, t ANGLE
*$i);

create transition "TAKE_LEFT 1 FORK_" & ’$%$i’ (x X , y Y, r RADIUS + 5«STEP , t
ANGLE* $1—ADJUST/5) ;

create transition "TAKE_RIGHT_1_ FORK_" & '$i” (x X , y Y , r RADIUS + 5«STEP , t
ANGLE * $i+ADJUST/5);

create place "WAIT RIGHT FORK_ " & “$i’ (x X , y Y, r RADIUS + 4«STEP, t ANGLE«$i—

ADJUST/4);

create place "WAIT_LEFT FORK_ " & ’$i” (x X , y Y, r RADIUS + 4%STEP, t ANGLEx$i+
ADJUST/4);

create transition "TAKE LEFT 2 FORK_" & ’$i’ (x X, y Y, r RADIUS + 3%STEP , t
ANGLEx $i+ADJUST/3) ;

create transition "TAKE_RIGHT 2 FORK_ " & '$i’ (x X, y Y, r RADIUS + 3%STEP, t
ANGLEx $i—ADJUST/3) ;

create place "EAT_" & ’$i’ (x X, y Y, r RADIUS + 2«STEP, t ANGLE+$i);

create transition "RELEASE FORK " & '$i’ (x X , y Y, r RADIUS + STEP, t ANGLE«$i
)

connect place "THINK " & "$i’ to transition "TAKE LEFT_ 1 FORK " & ’"$i’;

connect place "THINK_ " & ’$i’ to transition "TAKE_RIGHT_1 FORK_ " & ’'$i’;

connect transition "TAKE LEFT_ 1 _FORK_ " & ’$i’ to place "WAIT RIGHT FORK " & "$i’;
connect transition "TAKE_RIGHT_1 FORK_" & ’$i’ to place "WAIT_LEFT_FORK " & ’$i’;
connect place "WAIT RIGHT FORK " & ’$i’ to transition "TAKE_RIGHT 2 FORK_ " & ’$i
connect place "WAIT_LEFT_FORK_ " & ’$i’ to transition "TAKE_LEFT 2 FORK_ " & ’$i’;
connect transition "TAKE_RIGHT_ 2 FORK_" & ’'$i’ to place "EAT_" & ’'$i’;

connect transition "TAKE_LEFT 2 FORK_ " & ’$i’ to place "EAT_ " & ’$i’;

connect place "EAT_" & ’$i’ to transition "RELEASE FORK " & "$i’;

create place "FORK_LEFT " & ’$i’(x X, y Y, r RADIUS, t ANGLE+$i — ADJUST);
create place "FORK RIGHT " & '$i’ (x X, y Y, r RADIUS, t ANGLEx$i + ADJUST);

connect transition "RELEASE FORK_ " & ’'$i’ to place "FORK_LEFT " & ’'$i’;
connect transition "RELEASE FORK_ " & ’'$i’ to place "FORK RIGHT " & ’'$i’;
connect transition "RELEASE FORK " & ’"$i’ to place "THINK_ " & "$i’;

connect place "FORK_LEFT_" & ’$i’ to transition "TAKE_LEFT_1 _FORK_" & "$i’;
connect place "FORK RIGHT_" & ’$i’ to transition "TAKE_RIGHT_1 FORK " & "$i’;
connect place "FORK_LEFT_" & ’$i’ to transition "TAKE_LEFT 2 FORK_" & "$i’;
connect place "FORK RIGHT_" & ’$i’ to transition "TAKE_RIGHT 2 FORK " & "$i’;

end loop;
for $i in 1..PHILOS loop

if $i = PHILOS then
merge place "FORK_LEFT_" & 'PHILOS’ and place "FORK_RIGHT_1" into (name "FORK_" &
"$i’,marking "1");
else
merge place "FORK_LEFT_" & ’'$i’ and place "FORK RIGHT " & ’$i+1’ into (name "
FORK_" & ’$i’, marking "1");
end if;

end loop;

21

CHAPTER 3. EXAMPLES

3.4 Trains

Two trains circulate in the same direction on a circular railroad, divided in fifteen sections.
The two trains can never, for security reasons, be on two contiguous segments. Traffic
lights manage the access to each of these sections. The Petri net shown at figure[3.4, model
this problem: sections are represented by places Section_1 to Section_15. The presence of
a marking into of this place means that a train is present at this location. Traffic lights are
modelled by places F1 to F15. The presence of the marking indicate that the light is green,
the entry in the section it is guarding is then possible. The passage from a section x to a
section y is done at the activation of the transition x to y.

It is a good example of the automatization made possible by PetriScript: it is suffi-

cient to modify the macro SECTIONS to obtain a bigger net, without having to use the
graphical interface.

define (X,250)
define(Y,350)
define (radius ,50)
define (R,150)

define (SECTIONS, 15)

define (INNER_ANGLE, 360 /SECTIONS)
define (OUTTER_ ANGLE, 360/ (2+SECTIONS))

int
int

for

end

for

0;
0;

$i in 1.. SECTIONS loop

create place "F" & '$i” (x X, y Y, r radius, t $i * INNER_ANGLE);

create place "Section_" & ‘$i’ (x X, yY, r R, t $i * INNER ANGLE) ;

create transition "t" & '$i’ & "_to_" & ’$i mod SECTIONS + 1" (x X, y Y, r R, t
$i x INNER_ANGLE + OUTTER ANGLE) ;

loop;

$i in 1.. SECTIONS loop

connect place "Section_" & '$i’ to transition "t"&’'$i’ & "_to_" & ’$i mod
SECTIONS + 17;

connect transition "t" & '$i’ & "_to_" & ’$i mod SECTIONS + 1’ to place "Section_
" & ’$i mod SECTIONS + 17;

if $i /=1 then

connect place "F" & '$i’ to transition "t" & '$i—1" & "_to_" & "$i’;
else

connect place "F1" to transition "t" & ’'SECTIONS’ & "_to_" & '1’;
end if;

connect transition "t" &’$i mod SECTIONS + 1’ & "_to_" & ’'($i+1) mod SECTIONS +
1’ to place "F" & "$i’;

end loop;

for $i in 1.. SECTIONS loop

if $i mod 3 = 0 then

set place "Section_" & '$i’ to marking "1";
else

set place "F" & ’$i’ to marking "1";
end if;

end loop;

22

CHAPTER 3. EXAMPLES

THINK 2 TAKE_RIGHT_1_FORK_2

WAIT_LEFT_FORK_2

TAKE_LEFT_1_FORK_2 TAKE_LEFT_2_FORK_2

WAIT_RIGHT_FORK_2

TAKE_RIGHT_2_FORK_2

A\ RELEASE_FORK 2 TAKE_RIGHT_2_FORK_3

TAKE_LEFT_1_FORK_3

WAIT_RIGHT_FORK_3

RELEASE_FORK_3 THINK_3
¥ N\

1

_RELEASE_FORK_1

. WAIT_LEFT_FORK_3
KTAKE_LEFT_Z_TORK_l TAKE_LEFT_2_FORK_3

EAT_1
WAIT_LEFT_FORK_1

TAKE_RIGHT_1_FORK_1 TAKE_RIGHT_2_FORK_1

/WAIT_RIGHT_FORK_1

TAKE_LEFT_1_FORK_1
THINK_1

Figure 3.3: Philosopher’s dinner

23

CHAPTER 3. EXAMPLES

Section_11_to_12
10_to_11 "5~ Section_12

— T~
Section_10 12_to_13

1
Section_13

13_to_14

F11
Section_14
Section_8 14_to_15
" o
I
1 F15 Section_15
b Q
1
Section_7 F1 15_to_1
Fs F4 Section_1
1 WO /O
Section_6 1 1_to_2
1 5_to_6

Section_2

Section_5 2 to_3

4_to_5 Section_3

Secti&iztﬁ—d)“

1

Figure 3.4: Trains

24

Appendix A

Backus-Naur Form

Keywords are in bold.

A few definitions

char = ASCII characters ,except formatting characters
integer = [0-9]+

chars = sequence of char

identifier = "$’ chars

Expressions used by instructions and node descriptions

arithmetic_operator = Tk
I I/I
| mod
| I_I
I !+’
arithmetic_expression = "(’arithmetic_expression)’

| arithmetic_expression
arithmetic_operator
arithmetic_expression

integer

string_expression = str_exp_comp
str_exp_comp ‘&’ str_exp
str_exp_comp = ’"’chars
| "’’identifier
| "’ ’arithmetic_expression

sy
i

17

boolean_relator = <

boolean_operator = or

boolean_expression = boolean_relation
boolean_operator

25

APPENDIX A. BACKUS-NAUR FORM

boolean_relation

regexp

Node description

node_type

attribute

attribute_expression
node

node_description

attributes_list

List of nodes

node_list =

nodes_list =
list_component ::=

node_regexp =

boolean_relation

| not boolean_expression
| "(’ boolean_expression ')’
| boolean_relation

= arithmetic_expression
boolean_relator
arithmetic_expression

arithmetic_expression
in
arithmetic_epxression

’ ’

arithmetic_expression

= "%’ chars "%’

1= place
queue
transition
immediate
net

D= name
I X

' y

| r

I t

| domain

I marking

| guard

| priority

| delay

| action

| weight

| authors

| declaration

= string_expression
arithmetic_expression

= node_type node_description
list_access

= string_expression
I string_expression attribute attribute_expression

| string_expression ’(’attributes_list ")~

= attribute attribute_expression
attribute attribute_expression’,’ attributes_list

node_type ’'{’nodes_list "}’

list_component
list_component ’,’” nodes_list

node_description
node_regexp

regexp

26

APPENDIX A. BACKUS-NAUR FORM

I regexp attribute regexp
I regexp '(’list_regexp ')’

list_regexp = attribute regexp

attribute regexp’,’list_regexp
list_access = identifier [“arithmetic_expression ']’
Arcs
arc = "(’'node,node”) ’

Main body

body = preprocess

| declarations

| instructions
instructions = instruction ’;’

instruction ’;’ instructions

instruction = conditional
| looping

I printing
I appending
I affectation

| creation

| connection

| deletion

| fusion

| modification

Macros

For more informations on the preprocessor, please take a look at the m4 documentation.

preprocess = define "(’chars’,’chars”)’
Declarations
type = int
| string
| list
declarations = type identifier ’:=’ string_expression

’ ’

| type identifier arithmetic_expression
| type identifier “:=’ node_list
| type identifier

Conditional structures

conditional = if bool_exp then
instructions
end if ’;’

if bool_exp then
instructions
else
instructions
end if 7;’

looping = while bool_exp then
instructions

27

APPENDIX A. BACKUS-NAUR FORM

Various instructions

printing

affectation

appending

1.7

end loop ’;

for identifier in ar_exp ..’ ar_exp loop
instructions

1

end loop ’;

print string_expression

identifier ’:=’ identifier

identifier ":=’ string_expression
identifier ’':=’ arithmetic_expression
identifier ’':=’ node_list

append node to identifier
append node_list to identifier
append identifier to identifier

Instructions to manipulate nodes

creation

connection

deletion

modification

fusion

fusion_comp

create node

connect inhibitor string_expression node to node
connect inhibitor node to node

connect string_expression node to node

connect node to node

delete node
delete node_list
delete identifier
delete arc

set node to ’(’attributes_list)’
set net to ’(’attributes_list ')’
set arc to string_expression

merge fusion_comp and fusion_comp into attributes_list

merge fusion_comp and fusion_comp
merge identifier into attributes_list
merge node_list into attributes_list
merge identifier

merge node_list

node

identifier
node_list

28

Index

Arcs,[14]

Arithmetic expressions,

BNF, 25]
Boolean expression, |Z|

Control structures
conditional structures, [7]
loop structures,

CPN-AML, 2]

M4, [
Macao, 2]
Macros,

Node
connection, [15]
creation, [T4]
deletion,
description,
modification,
Nodes list,

String expressions, [f]

Types
integers, 5]

lists,
strings, [§

	PetriScript basics
	Using PetriScript
	Generalities
	Comments
	The basic instruction: print
	Macros
	Variables types
	Arithmetic expressions
	String expressions
	Control structures
	Conditional structures
	Loop structures

	Basic example

	Manipulate Petri Nets
	Describe a node
	Single node
	Lists of nodes
	Arcs

	Available operations
	Creation
	Connection
	Deletion
	Modification
	Fusion

	Examples
	FIFO
	Philosophers' dinner
	Another Philosophers' dinner
	Trains

	Backus-Naur Form

